塗膜材の種類とコンクリート壁の含水率変化

○湯浅 昇1,2 阿知波政史1 谷川 伸1

1. はじめに

コンクリート外壁に施工した仕上塗膜材に、ひがれやふくれが生じる場合がある。
これらの不具合は、仕上塗膜材の品質、温度等の要因の他に、下地コンクリートの品質、特に含水率に多大な影響を受けることが経験的知られている。
しかしながら仕上塗膜材施工前のコンクリートの含水率測定の事例は多少ある1)2)ものの、仕上塗膜材施工後のコンクリート内部の含水率分布の変化を測定した例は極めて少ない。

本研究は、模擬コンクリート壁に塗布した外壁用塗膜防水材および仕上塗膜を施工し、変形変化とあらかじめコンクリート中に埋め込んだセラミックセンサ2)により内部含水率分布を測定した結果を検討した。

2. 実験の概要

(1) コンクリート試験体の作製

コンクリートの使用材料として、普通ポルトランドセメント(ρ=3.16)、大井川産細骨材(ρ=2.62)、大井川産粗骨材(ρ=2.66)、化学粘着剤(Na70, 303A)、習志野市水道水を使用した。

表-1に示す調合により、水セメント比60%のコンクリートを練り混ぜ、300×300×150mmの鋼製型枠に打設した。なお、内部含水率分布を測定する試験体では、写真-1に示すセラミックセンサを図-1に示すように、両表面（塗膜施工面）から0.5、1.5、

<table>
<thead>
<tr>
<th>W/C (%)</th>
<th>水セメント質量 (kg/m³)</th>
<th>細骨材</th>
<th>粗骨材</th>
<th>化学粘着剤 (g/m²)</th>
<th>スランプ (cm)</th>
<th>空気量 (%)</th>
<th>压縮強度 (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>185</td>
<td>308</td>
<td>765</td>
<td>1011</td>
<td>770</td>
<td>1800</td>
<td>21.6</td>
</tr>
</tbody>
</table>

*100倍希釈液

Change of Moisture Content in Concrete Wall for Various Finish Membrane Materials

YUASA Noboru1, ACHIWA Masafumi2 and TANIKAWA Shin2

- 231 -
表-2 仕上塗膜材の種類と性状

<table>
<thead>
<tr>
<th>仕上塗膜材の種類</th>
<th>通称</th>
<th>アクリル樹脂リシン</th>
<th>アクリル樹脂タイル</th>
<th>アクリルゴム系弾性タイル</th>
<th>アクリルゴム系塗膜防水材</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS</td>
<td>A 6909</td>
<td>A 6021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>外装薄塗りE</td>
<td>複層塗E</td>
<td>防水形複層塗E</td>
<td>塗膜防水材</td>
<td></td>
</tr>
<tr>
<td>仕様 (kg/m²)</td>
<td>下塗材</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>主材</td>
<td>1.45</td>
<td>1.50</td>
<td>1.65</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>上塗材</td>
<td>-</td>
<td>0.36 (アクリル樹脂)</td>
<td>0.36 (アクリルウレタン樹脂)</td>
<td>0.30 (アクリルシリンコン樹脂)</td>
<td></td>
</tr>
<tr>
<td>樹脂量 (%)</td>
<td>8.3</td>
<td>9.0</td>
<td>24.8</td>
<td>57.3</td>
<td></td>
</tr>
<tr>
<td>Ig (%)</td>
<td>-5</td>
<td>10</td>
<td>-15</td>
<td>-57</td>
<td></td>
</tr>
<tr>
<td>引張強さ (N/mm²)</td>
<td>-</td>
<td>2.9</td>
<td>1.6</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>破断時の伸び率 (%)</td>
<td>-</td>
<td>5</td>
<td>158</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>透湿率 (g/m²・24h)</td>
<td>737.3</td>
<td>74.6</td>
<td>26.6</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>炭酸ガス透過度 (ml/m²・24h・atm)</td>
<td>21151</td>
<td>2346</td>
<td>2748</td>
<td>1543</td>
<td></td>
</tr>
<tr>
<td>透水性 (ml/m²・d)</td>
<td>79.1</td>
<td>24.1</td>
<td>30.2</td>
<td>29.9</td>
<td></td>
</tr>
</tbody>
</table>

25.5, 7.5 cmの深さに埋め込んだ。試験体は、一仕上塗膜材につき、セラミックセンサを埋める試験体1体、質量変化を測定し、最後にふくれ発露試験、ふくれ促進試験を行う2体の計3体作製した。

打設後、コンクリートは20℃、R.H.60%の恒温恒湿室に静置し、打設24時間後に脱型した。コンクリートの初期質量を測定し、すぐに側面4面をエポキシシートにてシールし側面を封せずエポキシ等の封かん材を含めた初期質量を測定した。なお、乾燥面（30×30cm）2面は、この時点で空気中に開包した。

(2) 仕上塗膜材の施工

表-2に、仕上塗膜材の種類と性状を示す。

乾燥開始後7日（材齢8日）において、下塗材の塗布を行った。

乾燥後、主塗材の塗布を行った。主塗材はコンプレッサーを使用した吹付形式で塗布し塗布量を測定しながら二度塗りで仕上げた。また、塗布面表面に発生したピンホールには小型の刷毛を用いて主塗材を塗りこんだ。

主塗材塗布後、3日経過（材齢11日）後、複層については、上塗材（トップコート）を所定量塗布した。塗膜防水材には、水系と溶剤系アクリルシリンコン樹脂仕上塗料を上塗材（トップコート）として塗布した。

図-2 セラミックセンサの測定原理

(3) コンクリートの含水状態の測定

コンクリート打設1日で脱型し、仕上塗膜材の施工過程を踏まえて、温度20℃、R.H.60％におけるコンクリート30×30cm両面からの乾燥によるコンクリートの含水状態をa 単位面積あたりの乾燥量、b コンクリート内部含水率分布の観点から考察するため次の測定を行った。

a. 単位面積あたりの乾燥量の測定

仕上塗膜材を通じて乾燥したコンクリートの質量を測定し、単位面積あたりの乾燥量として整理した。乾燥量の測定は、コンクリート脱型後、側面の乾燥防止のための処置、仕上塗膜の施工過程で増える質量をそれぞれの過程で考慮し、封かん養生終了直後の材齢1日質量を初期質量として計算した。
b. バコクリートの内部含水率分布測定方法
ここでいうバコクリートの含水率は、バコクリートを100℃で恒温となるまで乾燥させた時、蒸発して失われた量を含水率とし、これを105℃の乾燥で恒温となったバコクリートの質量で除した質量含水率を指す。ただしここでは、バコクリートに埋め込んだ場合にその電気抵抗とバコクリートの質量含水率の関係が明らかとなっている。10×5mmのセラミックセンサ（写真1）を埋め込み、センサの電気抵抗から質量含水率を非破壊で間接的に求めた。このセンサの測定原理を図2に示す。測定方法の詳細、精度については、文献3を参照されたい。

3. 結果及び考察

(1) 単位面積当たりの乾燥量
図-3に、バコクリート材付きと単位面積当たりの乾燥量の関係を示す。
表2に示す透湿度の順に乾燥量が多いことがわかる。樹脂リシンでは、未塗装とほぼ同等の乾燥量にあった。塗膜防水材について、上塗材（トップコート）に、水系の仕上塗料を使う場合の方が、弱溶剤系の仕上塗料を使う場合に比し、乾燥量は多かった。

(2) 含水率分布の経時変化
図-4は、バコクリートの各深さにおける含水率の経時変化を示したものである。図-5は、それをバコクリートの含水率分布の
図-5 含水率分布の経時変化

経時変化として表したものである。
図-3で乾燥量の多かった未塗装、樹脂リシン、樹脂タイルの試験体は、時間の経過とともに、含水率が表層から内部にわたり減少していることがわかる。一方、図-3で量の少なかった弾性タイル、塗膜防水材（水系）、塗膜防水材（弱溶剤系）では、材齢7日以降の変化が、表層から内部全体で小さいことがわかる。

(3) 塗膜防水材について、上塗材（トップコート）に、水系の上塗料を使う場合の方が、弱溶剤系の上塗料を使う場合に比し、乾燥量は多かった。
(4) 未塗装、樹脂リシン、樹脂タイルの試験体は、時間の経過とともに、含水率が表層から内部にわたり減少するが、弾性タイル、塗膜防水材（水系）、塗膜防水材（弱溶剤系）の試験体の含水率分布の変化は小さかった。

4. まとめ
模擬コンクリート壁に透湿性の異なる外壁用塗膜防水材および仕上塗材を施工し、コンクリートの含水状態を観察した結果は、次の通りである。
(1) 塗膜材の透湿度の順に乾燥量が多いことがわかった。
(2) 樹脂リシンでは、未塗装とほぼ同等の乾燥量であった。

【参考文献】
1) 湯浅昇・笠井芳夫・松井勇・遊見義男・佐藤弘和：仕上げ材を施すコンクリート床スラブの含水率、細孔構造、日本建築学会構造系論文集、第504号、pp.7-13、平成10年2月
2) 湯浅昇・笠井芳夫・松井勇：乾燥を受けたコンクリートの表層から内部にわたり含水率、細孔構造の不均質性、日本建築学会構造系論文集、第509号、pp.9-16、平成10年7月
3) 湯浅昇・笠井芳夫・松井勇：埋め込みセラミックセンサの電気的特性によるコンクリートの含水率測定方法の提案、日本建築学会構造系論文集、第498号、pp.13-20、平成9年8月

*1 日本大学 生産工学部 建築工学科 College of Industrial Technology, Nihon University
*2 東亜合成（株）R&D総合センター 製品研究所 General Center of Research and Development, New Products Research Laboratory, Construction Products Group, Toagosei Co., Ltd.